
Introduction Background Our Approach Illustrative Example Conclusion and future work

A Proactive Approach for Runtime
Self-Adaptation Based on Queueing

Network Fluid Analysis

Emilio Incerto1 Mirco Tribastone2 Catia Trubiani1

1Gran Sasso Science Institute, L’Aquila, Italy
2IMT Institute for Advanced Studies, Lucca, Italy

1st International Workshop on Quality-Aware DevOps
(QUDOS) September 1, 2015

1 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Outline

1 Introduction

2 Background

3 Our Approach

4 Illustrative Example

5 Conclusion and future work

2 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Motivations

In software development process the fulfillment of
performance requirements is a very important goal
In most application domains performance evaluation is
critical even at design time
Furthermore, run-time variability makes the process of
devising the needed resources challenging

Research question: How to fulfill performance
requirements while considering run-time variability?

3 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Motivations

In software development process the fulfillment of
performance requirements is a very important goal
In most application domains performance evaluation is
critical even at design time
Furthermore, run-time variability makes the process of
devising the needed resources challenging

Research question: How to fulfill performance
requirements while considering run-time variability?

3 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

The Idea

Self-adaptation is a promising technique
It consists in finding at run-time the most suitable system
configuration that preserves the functional behavior while
meeting performance requirements
We propose a proactive run-time self-adaptation approach
based on fluid approximation of queuing networks

The idea is to devise at run-time the most suitable system
configuration relying on efficient transient analysis of a QN
model, fed with the actual system parameters

4 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

The Idea

Self-adaptation is a promising technique
It consists in finding at run-time the most suitable system
configuration that preserves the functional behavior while
meeting performance requirements
We propose a proactive run-time self-adaptation approach
based on fluid approximation of queuing networks
The idea is to devise at run-time the most suitable system
configuration relying on efficient transient analysis of a QN
model, fed with the actual system parameters

4 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Background: Fluid approximation

The goal of this technique is to speed up the analysis of
transient dynamics of queueing networks models
Basically it consists in translating a QN model in a system
of Ordinary Differential Equations (ODEs)

Each equation analytically describes the evolution of the
queue length at each service center
Then, solving these equations, we are able to derive the
performance indexes of interest

5 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Background: Fluid approximation

dx1(t)
dt

= −µ1x1(t) + µ2 min(1, x2(t))

dx2(t)
dt

= +µ1x1(t)− µ2 min(1, x2(t))

6 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Our Approach

7 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Our Approach: Monitoring Phase

8 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Our Approach: Analysis Phase

9 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Our Approach: Planning Phase

10 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Our Approach: Execution Phase

11 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example

We consider a constraint model requiring that the
percentage of jobs in the queue of every center does not
exceed 0.5% of the total jobs population
We developed an Eclipse based tool for QN models
definition and M2T transformation execution.
http://sourceforge.net/projects/qnml/

12 / 19

http://sourceforge.net/projects/qnml/


Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example: Monitoring


0 1 0 0 0
0 0 1/3 1/3 1/3
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


Station Init. Pop. µi Z
D1 10 n.d. 0.5
Server1 0 2.0 n.d.
Server2 0 0.5 n.d.
Server3 0 0.5 n.d.
Server4 0 0.5 n.d.

13 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example: Analysis

dx1

dt
=− µ1x1(t) + µ3 min(x3(t),1) + µ4 min(x4(t),1)

+ µ5 min(x5(t),1);
dx2

dt
=+ µ1x1(t)− µ2,1 min(x2(t),1)− µ2,2 min(x2(t),1)

− µ2,3 min(x2(t),1);
dx3

dt
=+ µ2,1 min(x2(t),1)− µ3 min(x3(t),1);

dx4

dt
=+ µ2,2 min(x2(t),1)− µ4 min(x4(t),1);

dx5

dt
=+ µ2,3 min(x2(t),1)− µ5 min(x5(t),1);

14 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example: Analysis

15 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example: Planning & Execution

16 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Illustrative Example: Planning & Execution

17 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Conclusion and future work

We presented a proactive approach that provides
self-adaptation capabilities to software systems in order to
guarantee the fulfillment of performance requirements
Key Idea: exploit the analysis of transient dynamics
through QNs fluid approximation technique
Our Research Agenda:

Formal specification of the constraints analysis and
refactoring engine
Language definition for constraints and refactoring
specifications
Symbolic modeling and optimization for the planning phase
Systematic comparison between our approach and other
simulation techniques

18 / 19



Introduction Background Our Approach Illustrative Example Conclusion and future work

Feedback and Thought provoking

Feedback and Discussion:
What are the run-time variabilities in your domain of
expertise?
How do you manage such variabilities?
What are the most critical performance/quality/cost
requirements in your domain of expertise?
How do you evaluate the fulfillment of such requirements?

Thought provoking statement:
Is it always convenient to refactor software systems?!
What if run-time variability is too fast?!
How to plan refactorings that are "fast enough" to cope with
run-time variability?!

19 / 19


	Introduction
	Background
	Our Approach
	Illustrative Example
	Conclusion and future work

