DevOps:
Concerning
Developers ...

Petr TUma

Department of
Distributed and
Dependable

FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY IN PRAGUE

... How It All Started

We have this nice workshop about DevOps ... I
‘ In some panic - What exactly is DevOps ?

i We have this nice whitepaper about DevOps ... I
‘ reading - | think we do Dev but not Ops. f

i | know. And that is where you miss all the fun ! I

* The words could have been entirely different :-)

DevOps
Quallty of
serwce
Things
we do

DevOps for Developers

see how we can reach the actual programmers

Why Developers ?

This could be an entirely wrong idea !
- Interaction is about teams
- Programmers are not team interface
- Quality of service management is more
for architects and performance engineers

But perhaps there is something to it
- It Is hard to imagine building
good system from crap code
- Agile experts vs mindless drones ?
- Much harm can be done at code level ...

Just One Way To Code This ?

Assignment
Read an XML document
Display a table of references

INPUT

<section>

<title>Source</title>

<para>
Here 1s
<link linkend="target">a link</link>
element.

</para>

<section 1id="target">
<title>Target</title>

OUTPUT

Source:
a link (Target)

Just One Way To Code This ?

Assignment
- Read an XML document
- Display a table of references

Considerations
- Students on advanced programming course
- Library for manipulating XML data provided

- No complex data structures required
- Sequence of sections with references
- Mapping from identifiers to sections

- Basic timing information provided

- Example inputs provided

Just One Way To Code This ?

/On an 8 MB XML document
some solutions are order
of magnitude slower !

@-{[|-1mo

30

Execution time [s]
20
|

10

) e
=05 o5 o L sgo0e o -5
T T T T T T T T IR N N

Execution time [s]

3.0

0.5 1.0 1.5 2.0 2.5

0.0

Just One Way To Code This ?

- : -
A lot of variance remains
even after the outliers

are dropped ...

Survey After Coding

Code

- Mostly but not always functionally correct
- Complexity anywhere from O(n) to O(n?3)

Attitude

- Complexity mostly but not always judged correctly
- Execution time almost never guessed correctly
- Memory consumption considered irrelevant

- Input size in megabytes considered
too small to deserve optimizing

Many of the mistakes
are easily corrected by
runtime observations

Historical Excursion

how we worked on middleware performance evaluation
and what we learned about supporting developers

Middleware Performance

1991
- CORBA 1.0 specification released
- Pricing eventually from free to thousands of $ per runtime

How to examine performance ?
- Eventual application workloads not very clear

- Features few and clearly defined
- Measure each feature in isolation
- Measure reasonable combinations
- Report measurement results
- Graphs
- Anomalies

Middleware Performance

Results
- Completely automated evaluation environment

- Reports hundreds of pages per platform

Dependency On Number Of Threads

The graph depicts the dependency of the time it takes to complete the invocation on the number of threads issuing the invocations
axis is the time it took to complete the i

us Dependency

0000 T —
80000 T
0000 T
BOOO0 T

SO000 T
us Logarithmic Axis

T B |
 ————
T T
0 30 40 80 60 70 80 S0 100

I
L, LA R S N N
10 20 30 40 D0 50 70 80 90 100 Threads

Thread = Roundtrip Time e Roundtrip Time
reads Resident Memory Rezident Memory
+ Median —t— Swapped Memory —— Swapped Memory

—— Average kernel Memory Kernel Memory

Lessons Learned

~N
Full Automation Achievable
but sometimes extremely tricky
/
~N

Everybody Loves Graphs

for the first five minutes

Persisting Issues

Results difficult to interpret correctly

f

- Lack of feel for actual numbers Recall
-+ Some conclusions cross graphs student
- Eventually requires looking at sources experiment

- Workload plus application plus platform
- Developer only wrote application

Significant expenses in terms of time @
- Measurement time does not scale
- Workloads and configurations @
- Large basic constants
- Developer time is even worse g
- Notifications rather than results
- False alarms very irritating e

Where We Have Moved Since

~\

p
@ Performance Specifications
.

\

p
@ Performance Unit Testing
_

p
@ Performance Documentation
_

Performance Specifications

if a developer specifies performance requirements we can
save time by only measuring relevant data and
target reporting at specific requirements

Perf Spec Wish List

Appropriate granularity
- Methods, classes, perhaps modules

- Not about end user visible transactions
- Absolute timing rarely available
- Timing depends on workload

Suitable for vaguely defined constraints

. HX S
. HX S
. HX S

10U
10U

10U

C
C

C

now be faster than before”
not be (much) slower than Y~
scale for practical range of inputs”

Working with real measurements
- Noise and other artifacts
- Platform portability

SPL Specifications

Formal language for performance specifications

“on Iinput sizes of 1000 and 5000,
NewfFunction should be at least
10% faster than OldFunction”

Quantifiers over
finite sets
Vs € {1000, 5000}:

NewFunction (s) < 0.9 X OldFunction (s)
%rmame
transformation
function

Performance as
random variable

 Comparison
IS hypothesis
testin

Comparison Sensitivity

High sensitivity expected
- Sensitivity to changes above 1%

seems reasonable to ask

- But changes around 5%

Frequency

are easily random fluctuations

_ " Time to build DOM tree
averages from 20000 samples
warmup artifacts filtered out

15

10

8.6 8.8 9.0 9.2 9.4 9.6 9.8

Method execution time [ms]

Probability

0.0 02 04 06 08 1.0

00 0.2 04 06 08 1.0

Bootstrap Procedure

Welch Test Bootstrap Test

/O /0\ ,O/O\O/O_O =] X Wrong reject /o/o

o [@ _| © Correct reject

g © 00 Welch test ° -
1. We obs er to reject -
1 [\/*% [Bootstrap based }ten wrong
——1_test rarely wrong X — =X ——x
0 2 4 0 2 4 6 8 10
OIOOOOOO‘O'OOO o] O O o ; — /O /O O,Oo o] o] O o
q& \ c1l . : :
posooa oo ——x——x——x——x| ["'\We tweak input data size .
0 2 4 6 10

File size difference [%]

@ Runtime: What For ?

Dynamic applications
- More integrated runtime performance adaptation
- Many interesting applications but not discussed here

Performance assertions
- For important conditions difficult to estimate otherwise
- Just having debug dump can be useful

Interactive performance information
- Evaluating developer supplied formula in runtime context
- Developer can fire off queries while programming

@ Runtime: Open Issues

Overhead
- Measuring everything clearly too expensive
- But what is acceptable ?

- Pitting actual overhead against visions of benefits
- Remember moving from HTTP to HTTPS ?

- Can we predict overhead ?

Location haming
- Source code names terribly static
- Call sites better but not by much
- Virtual dispatch complications
- Shallow call sites more useful than deep ones
- No good way to refer to sessions or instances
- Testing for instance identity creates more overhead
- Session Is not even a language concept

@ Runtime: Prototype Experiments

Baseline compress benchmark from SPEC jvm 2008

oy e
O 'S)

10.0
|

Typical noise from Gé

9.0

Compression time [ms]
8.0 8.5

7.5
|

7.0
|

Initial JIT complilation

Sample index

@ Runtime: Prototype Experiments

Monitoring of Harness.compress () turned on and off

QS

= B Q 8

Ty © o O

y | o
- > Qo = o° 5 S
0 &
c ® | o g8, o °p 8 . 82 g
= O, © a8 8, Zag e O
+— O 0 " @ 2B = 8 Q '@E] " 0O

0 = Sl @ e
Repeated JIT compilation | § = g
E o - S o. | Monitored execution
8 O ~ Ben ' :
: I".’-9r .

i QG) o

o |

o

o |

| | | |
0 5000 10000 15000

Sample index

@ Runtime: Prototype Experiments

Zooming in to when monitoring Is turned on

10.0
|

9.0

Monitored execution

Compression time [ms]
8.0 8.5

o _
M~

Sample index

@ Runtime: Prototype Experiments

Baseline vs monitoring

10.0
|

onitoring appears
faster but this Is
just random

9.0

Compression time [ms]
8.0 8.5

7.5
|

7.0
|

0 5000 10000 15000

Sample index

@ Runtime: Prototype Experiments

Monitoring of HashMap.get () turned on and off

o
<t

B

s = n
ﬁ
5

8

35

30

= Monitored execution

25

Compression time [ms]
20

15

10

0 1000 2000 3000 4000 5000 6000

Sample index

Performance Unit Testing

If a unit test can test performance we can
save time in execution and evaluation
by focusing on specific issue and
collect results related to
particular code and author

Perf Test Wish List

Construction same as functional unit test
- Setup, execution, validation, cleanup
- Robust execution

- Measurement handled by framework
- Avoid common implementation mlstakes

- Validation against performance sp
- Also documents contracts and assu

Do people
Executed during commit still make them ?
- Automated selection of tests

- Regulated measurement volume

Reasonably portable

Implementation Mistakes

public static void main (String [] args) {
LOMap<I,I> map = new LOMap<I,I> ();
for (int i = 0 ; i < 30000 ; i++)
map.put(i, 1);
AL1st<I> toRemove = new AList<I> ();
for (int 1 = size ; 1 < 60000 ; 1i++)
toRemove.add(1);

long start = System.currentTimeMillis (),

for (Integer cur : toRemove)
map.remove(cur);

long stop = System.currentTimeMillis ();

System.out.println (stop - start),

Multiple similar tests in Apache Commons JIRA

SPL Unit Testing

Framework for performance unit testing

vold saxBuillderTest (SPL spl, String file) {
byte [] data = Files.readAllBytes (file);
IStream 1s = new BAIStream (data);
SAXBuilder sax = new SAXBuilder ();

Document xml = null; \:Test setup)
while (spl.needsMore ()) {= Measurement loop

i1s.reset ();

spl.start (); 1.00p setup)
xml = sax.build (1is);
spl.end (); ~_Measured code .

SPL Unit Testing

Validation separate from test execution

Implementation version

ml := org.jdom.SAXBuilder.build@6a49ef6
2 := org.jdom.SAXBuilder.build@4e27535
w := saxBuilderTest Workload implementation

for £ in { "tiny.xml", "big.xml"

>=
() m2 Lwl(T) Workload
[Test condition . [;arameters]

JDOM Case Study

Most conditions very simple

nave now made X faster”
nope | have not made X slower”

nave coded X assuming A Is faster than B”

Workload rarely available

Some developer assumptions were wrong
- In our case about 10%
- Not clear whose fault

- Impossible to reconstruct conditions exactly
- Platform development terribly fast these days

@ Runtime: What For ?

Getting real workloads
- True workloads difficult to predict
- What is the typical data structure size ?
- What is the typical concurrency pattern ?
- How much does this change with context ?
- Specialization offers optimization opportunities
- Libraries coded assuming general workload

- Is one-element ArrayList better
than one-element TreelLlist ?

Getting real background interference
- Measuring performance in unit tests is like
evaluating driving performance without traffic

@ Runtime: Open Issues

Recording real workload
- Basic overhead already discussed

- Recording complete workload not practical
- Data size issues
- Privacy issues
- From workload generator code to workload sizing code
- Requires extra coding
- Not always clear what data aspects matter

Understanding real interference

- Too many possible sources: Data locking ? Cache
sharing ? Thermal budget ? Disk fragmentation ?

- Not clear what indicators to observe and report

@ Runtime: Open Issues

Evaluating test conditions

Performance likely to change

- With every restart
even when nothing else changes

- With every deployment
because platforms are not exactly equivalent

- With every code change
even when the change appears unrelated

How to distinguish incidental and essential changes ?

(Not) Handling Complexity

Everybody wants to test complexity

Vs € (1 .. 1000000):
Tree.get (s) < log (List.get (S))

Complexity is useful for algorithms
We are dealing with systems : .
Can we write this

for number of
servers ?

(Not) Handling Complexity

HashSet.contains S
“‘offers constant time performance” 00

80 100 120
I I I

Lookup time

60
I

40
I

I I I I I
Oe+00 2e+05 4e+05 6e+05 B8e+05 1e+06

Hash set size

(Not) Handling Complexity

HashSet.contains 8
“offers constant time performance”
(Q\|
] 8
o
E 8-
o © 8
2 3 o
o (o)
—
S
o o
2 o
h @oo°°@e°°
6666
o - @@@@@QQ
I | I | | |
0 50000 150000 250000

Hash set size

Change

(Not) Handling Complexity

list from Apache Commons Collections 4.0

- 17 I1ssues that explicitly mention “performance”
-1 code style change that happened to make things faster

- 10
- 10
- 1s

ptimization to replace inefficient iterator use
ptimization to introduce boolean shortcut

pecialized tree merge algorithm

- 13 fixes of excessive complexity

Collection intersect (Collection one,

Collection two) {

for (Object o : one) {

if

(two.contains (0)) { How do we
o fix this ?

Issue tracker mentions excessive execution time

Performance Documentation

if program documentation can describe performance we can
perhaps prevent implementation mistakes
and provide relevant measurements

Perf Doc Wish List

Generated almost automatically

- We have most pieces ready
- Workload from unit tests
- Measurements from unit tests
- Execution infrastructure from unit tests
- Scaling dimensions from performance specifications

- We need workload description

Generated on demand
- When particular documentation viewed

Avoid misleading information
- Performance in general is not composable
- Performance is not just timing

Method Detail

contains
public boolean contains(java.lang.Object o)
Specified by:
contains in interface java.util.Collection<T>
Specified by:
contains in interface java.util.List<T>
Overrides:
contains in class java.util.ArrayList<T>
Performance:
« Generator: | Unsuccesfull search v
Unsuccesfull search in a collection
Configuration:

Collection size

Submit

SPL Documentation

3062: Mean: 4505 Median: 5132

14000 |

12000

10000 |

8000}

6000}

Elapsed time (ns)

4000]

2000}

2000 3000 4000 5000 6000 7000
Collection size
Mean ¥/ Median ¥

o

& Graph Table

@ Runtime: What For ?

Looking at production performance
- Developers can see exact performance
of any code in executing application

Knowing production performance
- Corrects misconceptions about workload
- Provides performance awareness
- Perhaps makes developers think
about performance In the right places

N—

How much hindsight is in the advice to
*avoid premature optimization” ?

@ Runtime: Open Issues

Does it scale ?

Imagine cloud application
- Are measurements from different instances replaceable ?
How much overhead will occasional measurement incur ?

Can we make enough sense of real measurements ?
- Observation effects with short times

- Workload characterization missing

- Times include interference

Nice to see real behavior
No hints on what Is going on

How long do measurements stay valid ?

Beyond Timing
What about memory usage ?

Memory usage has multiple aspects

- Total occupation obviously essential

- Access patterns important for caches

- Temporary allocations related to garbage collection

Most aspects difficult to observe

- Total occupation only per process

- Access patterns indirectly through miss rate counters

- Temporary allocations on stack and heap look the same

Mostly at wrong level of granularity for developer
- What eactly is memory usage of a function ?

Temporary Allocations

Experiment to see if temporary allocations matter
- Workload that allocates and reads an array
- Independent array size and read count

Allocated size
public static void work () {

int [] data = new 1int [arr_len];
data [arr_len - 1] = rnd.nextInt ();
for (1 =0 ; 1 < wlk_len ; 1++)

data [i] = rnd.nextInt ();

Performed work

for (step = 0 ; step < arr_rds”; step++)
sum += data [rnd.nextInt (wlk_1len)];

Temporary Allocations

Measuring performance in isolation

Execution time [ns]
250000 300000

200000

150000

Doing more reads

has clear impact

Allocating more data
does not matter much

_EJ

4000 5000 6000

Array size or Read count

Temporary Allocations

Measuring performance in larger application

Execution time [s]

5700 5800 5900

5600

Allocating more data
Increases GC overhead

Doing more reads
has smaler impact

| ! ! !
3000 4000 5000 6000

Array size or Read count

To Summarize

Many potential benefits ...
- Continuous feedback on performance
- Validating performance assumptions
- Measurements with real interference
- Programming for real workloads

... and many challenges !

- Managing overhead and stability
- Navigation in runtime structures
- Understanding measurements

- Appropriate granularity

Thank You

)

—

SIXTH FRAMEWORK SEVENTH FRAMEWORK
PROGRAMME PROGRAMME

S
) A R
l"i‘ G C
-.. - |
CLECH FSCIEMCE FOUMNDIATIOMN

Much of this talk originated from the long-time work of my
research colleagues, which | gratefully acknowledge. The

errors, alas, are mine.

L0,

