
DevOps:
Concerning
Developers ...

Petr Tůma

FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY IN PRAGUE

We have this nice workshop about DevOps ...We have this nice workshop about DevOps ...

in some panic - What exactly is DevOps ?in some panic - What exactly is DevOps ?

We have this nice whitepaper about DevOps ...We have this nice whitepaper about DevOps ...

reading - I think we do Dev but not Ops.reading - I think we do Dev but not Ops.

I know. And that is where you miss all the fun !I know. And that is where you miss all the fun !

... How It All Started

* The words could have been entirely different :-)

DevOps for Developers

see how we can reach the actual programmers

DevOps for Developers

see how we can reach the actual programmers

DevOpsDevOps

Quality of
service

Quality of
service

Things
we do

Things
we do
?

Why Developers ?
This could be an entirely wrong idea !
• Interaction is about teams
• Programmers are not team interface
• Quality of service management is more

for architects and performance engineers

But perhaps there is something to it
• It is hard to imagine building

good system from crap code
• Agile experts vs mindless drones ?
• Much harm can be done at code level ...

Just One Way To Code This ?
Assignment
• Read an XML document
• Display a table of references

<section>
 <title>Source</title>
 <para>
 Here is
 <link linkend="target">a link</link>
 element.
 </para>
 <section id="target">
 <title>Target</title>
 ...

<section>
 <title>Source</title>
 <para>
 Here is
 <link linkend="target">a link</link>
 element.
 </para>
 <section id="target">
 <title>Target</title>
 ...

Source:
 a link (Target)

INPUT

OUTPUT

Just One Way To Code This ?
Assignment
• Read an XML document
• Display a table of references

Considerations
• Students on advanced programming course
• Library for manipulating XML data provided
• No complex data structures required

• Sequence of sections with references
• Mapping from identifiers to sections

• Basic timing information provided
• Example inputs provided

Just One Way To Code This ?

On an 8 MB XML document
some solutions are order

of magnitude slower !

On an 8 MB XML document
some solutions are order

of magnitude slower !

Just One Way To Code This ?

A lot of variance remains
even after the outliers

are dropped ...

A lot of variance remains
even after the outliers

are dropped ...

Survey After Coding
Code
• Mostly but not always functionally correct
• Complexity anywhere from O(n) to O(n3)

Attitude
• Complexity mostly but not always judged correctly
• Execution time almost never guessed correctly
• Memory consumption considered irrelevant
• Input size in megabytes considered

too small to deserve optimizing

Many of the mistakes
are easily corrected by
runtime observations

Many of the mistakes
are easily corrected by
runtime observations

Historical Excursion

how we worked on middleware performance evaluation
and what we learned about supporting developers

Middleware Performance
1991
• CORBA 1.0 specification released
• Pricing eventually from free to thousands of $ per runtime

How to examine performance ?
• Eventual application workloads not very clear
• Features few and clearly defined

• Measure each feature in isolation
• Measure reasonable combinations
• Report measurement results

• Graphs
• Anomalies

Middleware Performance
Results
• Completely automated evaluation environment
• Reports hundreds of pages per platform

Lessons Learned

Everybody Loves Graphs

for the first five minutes

Everybody Loves Graphs

for the first five minutes

Full Automation Achievable

but sometimes extremely tricky

Full Automation Achievable

but sometimes extremely tricky

Persisting Issues
Results difficult to interpret correctly
• Lack of feel for actual numbers
• Some conclusions cross graphs
• Eventually requires looking at sources

• Workload plus application plus platform
• Developer only wrote application

Significant expenses in terms of time
• Measurement time does not scale

• Workloads and configurations
• Large basic constants

• Developer time is even worse
• Notifications rather than results
• False alarms very irritating

Recall
student

experiment

Recall
student

experiment

1
ms

10
ms

100
ms

1
s

10
s

Where We Have Moved Since

 Performance Specifications Performance Specifications

 Performance Documentation Performance Documentation

 Performance Unit Testing Performance Unit Testing

1

2

3

Performance Specifications

if a developer specifies performance requirements we can
save time by only measuring relevant data and

target reporting at specific requirements

Perf Spec Wish List
Appropriate granularity
• Methods, classes, perhaps modules
• Not about end user visible transactions

• Absolute timing rarely available
• Timing depends on workload

Suitable for vaguely defined constraints
• “X should now be faster than before”
• “X should not be (much) slower than Y”
• “X should scale for practical range of inputs”

Working with real measurements
• Noise and other artifacts
• Platform portability

SPL Specifications
Formal language for performance specifications

“on input sizes of 1000 and 5000,
NewFunction should be at least
10% faster than OldFunction”

∀s ∈ {1000, 5000}:
NewFunction (s) ≤ 0.9 × OldFunction (s)

Quantifiers over
finite sets

Quantifiers over
finite sets

Performance as
random variable
Performance as
random variable

Performance
transformation

function

Performance
transformation

function

Comparison
is hypothesis

testing

Comparison
is hypothesis

testing

Comparison Sensitivity
High sensitivity expected
• Sensitivity to changes above 1%

seems reasonable to ask
• But changes around 5%

are easily random fluctuations

Time to build DOM tree
averages from 20000 samples

warmup artifacts filtered out

Time to build DOM tree
averages from 20000 samples

warmup artifacts filtered out

Bootstrap Procedure

We tweak input data sizeWe tweak input data size

We observe chance of
correct and incorrect

comparison

We observe chance of
correct and incorrect

comparison

Welch test
eager to reject
but often wrong

Welch test
eager to reject
but often wrongBootstrap based

test rarely wrong
Bootstrap based
test rarely wrong

@ Runtime: What For ?
Dynamic applications
• More integrated runtime performance adaptation
• Many interesting applications but not discussed here

Performance assertions
• For important conditions difficult to estimate otherwise
• Just having debug dump can be useful

Interactive performance information
• Evaluating developer supplied formula in runtime context
• Developer can fire off queries while programming

@ Runtime: Open Issues
Overhead
• Measuring everything clearly too expensive
• But what is acceptable ?

• Pitting actual overhead against visions of benefits
• Remember moving from HTTP to HTTPS ?

• Can we predict overhead ?

Location naming
• Source code names terribly static
• Call sites better but not by much

• Virtual dispatch complications
• Shallow call sites more useful than deep ones

• No good way to refer to sessions or instances
• Testing for instance identity creates more overhead
• Session is not even a language concept

@ Runtime: Prototype Experiments
Baseline compress benchmark from SPEC jvm 2008

Initial JIT compilationInitial JIT compilation

Typical noise from GCTypical noise from GC

Stable performanceStable performance

@ Runtime: Prototype Experiments
Monitoring of Harness.compress () turned on and off

Repeated JIT compilationRepeated JIT compilation
Monitored executionMonitored execution

@ Runtime: Prototype Experiments
Zooming in to when monitoring is turned on

Monitored executionMonitored execution

@ Runtime: Prototype Experiments
Baseline vs monitoring

Monitoring appears
faster but this is

just random
fluctuation

Monitoring appears
faster but this is

just random
fluctuation

@ Runtime: Prototype Experiments
Monitoring of HashMap.get () turned on and off

Monitored executionMonitored execution

Performance Unit Testing

if a unit test can test performance we can
save time in execution and evaluation

by focusing on specific issue and
collect results related to

particular code and author

Perf Test Wish List
Construction same as functional unit test
• Setup, execution, validation, cleanup
• Robust execution

• Measurement handled by framework
• Avoid common implementation mistakes

• Validation against performance specification
• Also documents contracts and assumptions

Executed during commit
• Automated selection of tests
• Regulated measurement volume

Reasonably portable

Do people
still make them ?

Do people
still make them ?

Implementation Mistakes
public static void main (String [] args) {
 LOMap<I,I> map = new LOMap<I,I> ();
 for (int i = 0 ; i < 30000 ; i++)
 map.put(i, i);
 AList<I> toRemove = new AList<I> ();
 for (int i = size ; i < 60000 ; i++)
 toRemove.add(i);

 long start = System.currentTimeMillis ();
 for (Integer cur : toRemove)
 map.remove(cur);
 long stop = System.currentTimeMillis ();
 System.out.println (stop - start);
}

Multiple similar tests in Apache Commons JIRA

SPL Unit Testing
Framework for performance unit testing

void saxBuilderTest (SPL spl, String file) {
 byte [] data = Files.readAllBytes (file);
 IStream is = new BAIStream (data);
 SAXBuilder sax = new SAXBuilder ();
 Document xml = null;

 while (spl.needsMore ()) {
 is.reset ();
 spl.start ();
 xml = sax.build (is);
 spl.end ();
 }
}

Test setupTest setup

Measurement loopMeasurement loop

Loop setupLoop setup

Measured codeMeasured code

SPL Unit Testing
Validation separate from test execution

m1 := org.jdom.SAXBuilder.build@6a49ef6
m2 := org.jdom.SAXBuilder.build@4e27535
w := saxBuilderTest

for f in { "tiny.xml", "big.xml" }
m1 [w](f) >= m2 [w](f)

Workload implementationWorkload implementation

Implementation versionImplementation version

Workload
parameters
Workload

parameters
Test conditionTest condition

JDOM Case Study
Most conditions very simple
• “I have now made X faster”
• “I hope I have not made X slower”
• “I have coded X assuming A is faster than B”

Workload rarely available

Some developer assumptions were wrong
• In our case about 10%
• Not clear whose fault

• Impossible to reconstruct conditions exactly
• Platform development terribly fast these days

@ Runtime: What For ?
Getting real workloads
• True workloads difficult to predict

• What is the typical data structure size ?
• What is the typical concurrency pattern ?
• How much does this change with context ?

• Specialization offers optimization opportunities
• Libraries coded assuming general workload
• Is one-element ArrayList better

than one-element TreeList ?

Getting real background interference
• Measuring performance in unit tests is like

evaluating driving performance without traffic

@ Runtime: Open Issues
Recording real workload
• Basic overhead already discussed
• Recording complete workload not practical

• Data size issues
• Privacy issues

• From workload generator code to workload sizing code
• Requires extra coding
• Not always clear what data aspects matter

Understanding real interference
• Too many possible sources: Data locking ? Cache

sharing ? Thermal budget ? Disk fragmentation ?
• Not clear what indicators to observe and report

@ Runtime: Open Issues
Evaluating test conditions

Performance likely to change
• With every restart

even when nothing else changes
• With every deployment

because platforms are not exactly equivalent
• With every code change

even when the change appears unrelated

How to distinguish incidental and essential changes ?

(Not) Handling Complexity
Everybody wants to test complexity

∀s ∈ (1 .. 1000000):
Tree.get (s) ≤ log (List.get (s))

Complexity is useful for algorithms
We are dealing with systems

Can we write this
for number of

servers ?

Can we write this
for number of

servers ?

(Not) Handling Complexity

HashSet.contains
“offers constant time performance”

HashSet.contains
“offers constant time performance”

(Not) Handling Complexity

HashSet.contains
“offers constant time performance”

HashSet.contains
“offers constant time performance”

(Not) Handling Complexity
Change list from Apache Commons Collections 4.0
• 17 issues that explicitly mention “performance”

• 1 code style change that happened to make things faster
• 1 optimization to replace inefficient iterator use
• 1 optimization to introduce boolean shortcut
• 1 specialized tree merge algorithm
• 13 fixes of excessive complexity

Collection intersect (Collection one,
 Collection two) {
 for (Object o : one) {
 if (two.contains (o)) {
 ...

Issue tracker mentions excessive execution time

How do we
fix this ?

How do we
fix this ?

Performance Documentation

if program documentation can describe performance we can
perhaps prevent implementation mistakes

and provide relevant measurements

Perf Doc Wish List
Generated almost automatically
• We have most pieces ready

• Workload from unit tests
• Measurements from unit tests
• Execution infrastructure from unit tests
• Scaling dimensions from performance specifications

• We need workload description

Generated on demand
• When particular documentation viewed

Avoid misleading information
• Performance in general is not composable
• Performance is not just timing

SPL Documentation

@ Runtime: What For ?
Looking at production performance
• Developers can see exact performance

of any code in executing application

Knowing production performance
• Corrects misconceptions about workload
• Provides performance awareness
• Perhaps makes developers think

about performance in the right places

How much hindsight is in the advice to
“avoid premature optimization” ?

How much hindsight is in the advice to
“avoid premature optimization” ?

@ Runtime: Open Issues
Does it scale ?
• Imagine cloud application

• Are measurements from different instances replaceable ?
• How much overhead will occasional measurement incur ?

Can we make enough sense of real measurements ?
• Observation effects with short times
• Workload characterization missing
• Times include interference

• Nice to see real behavior
• No hints on what is going on

How long do measurements stay valid ?

Beyond Timing
What about memory usage ?

Memory usage has multiple aspects
• Total occupation obviously essential
• Access patterns important for caches
• Temporary allocations related to garbage collection

Most aspects difficult to observe
• Total occupation only per process
• Access patterns indirectly through miss rate counters
• Temporary allocations on stack and heap look the same

Mostly at wrong level of granularity for developer
• What eactly is memory usage of a function ?

Temporary Allocations
Experiment to see if temporary allocations matter
• Workload that allocates and reads an array
• Independent array size and read count

public static void work () {
 int [] data = new int [arr_len];
 data [arr_len - 1] = rnd.nextInt ();
 for (i = 0 ; i < wlk_len ; i++)
 data [i] = rnd.nextInt ();

 for (step = 0 ; step < arr_rds ; step++)
 sum += data [rnd.nextInt (wlk_len)];
}

Allocated sizeAllocated size

Performed workPerformed work

Temporary Allocations
Measuring performance in isolation

Doing more reads
has clear impact

Doing more reads
has clear impact

Allocating more data
does not matter much
Allocating more data

does not matter much

Temporary Allocations
Measuring performance in larger application

Doing more reads
has smaler impact
Doing more reads
has smaler impact

Allocating more data
increases GC overhead
Allocating more data

increases GC overhead

To Summarize

Many potential benefits ...
• Continuous feedback on performance
• Validating performance assumptions
• Measurements with real interference
• Programming for real workloads

... and many challenges !
• Managing overhead and stability
• Navigation in runtime structures
• Understanding measurements

• Appropriate granularity

Thank You

Much of this talk originated from the long-time work of my
research colleagues, which I gratefully acknowledge. The
errors, alas, are mine.

